5. Concluding remarks

This paper concludes the study of the seminvariants for the non-centrosymmetric space groups which was initiated in a previous paper (Hauptman \& Karle, 1956). The theory of the seminvariants provides a basis for specifying an origin and the enantiomorph or reference frame when required. Furthermore it demonstrates the existence of relationships between the measured intensities and the values of phases. It will be the purpose of future publications to elucidate the exact nature of these relationships and by these means to continue the unified program for phase determina-
tion in the non-centrosymmetric space groups which has already been completed for the centrosymmetric. ones (Karle \& Hauptman, 1961 ff.).

References

Halptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No. 3. New York: Polycrystal Book Service.
Hauptman, H. \& Karle, J. (1956). Acta Cryst. 9, 45.
Hauptman, H. \& Karle, J. (1959). Acta Cryst. 12, 93.
International Tables for X-ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.
Karle, J. \& Hauptman, H. (1961). Acte Cryst. 14, 105.

Neutron Diffraction Investigation of Solid Solutions $\mathbf{A l T h}_{2} \mathbf{D}_{\boldsymbol{n}}$

By J. Bergima and J. A. Goedkoop*
Joint Establishment for Nuclear Energy Research. Kjeller, Norway
and J. H. N. van Vucht
Philips Research Laboratories, N. V. Philips' Gloeilampenfabrieken, Eindhoven-Netherlands
(Received 1 April 1960 and in revised form 15 June 1960)

Solid solutions of composition $\mathrm{AlTh}_{2} \mathrm{D}_{n}$, with $n=0,2,3,4$, have been studied by means of neutron diffraction. For $n=4$ the deuterium atoms completely fill a set of equivalent Th-tetrahedra, quite similar to the arrangement in thorium hydride. For the other compositions these sites are partly occupied. No evidence for ordering has been found, even at a temperature of $8 \mathbf{2} \mathbf{~ " K}$.

The intermetallic compound AITh ${ }_{2}$ easily absorbs hydrogen. Apart from a two-phase region at room temperature between the compositions $\mathrm{AlTh}_{2} \mathrm{H}_{0}$ and $\mathrm{AlTh}_{2} \mathrm{H} \sim_{1.5}$, the hydrogen is dissolved homogeneously until the ultimate composition $\mathrm{AlTh}_{2} \mathrm{H}_{4}$ is reached (van Vucht, 1960). X-ray investigation shows that the tetragonal symmetry of AlTh. is conserved in the solid solutions. When the lattice parameters are plotted against n, the number of hydrogen atoms per AlTh_{2}, a is found to increase up to $n=2$. There it shows a sharp break, followed by a decrease until saturation. On the other hand c increases monotonically.

As part of a larger program, a neutron-diffraction investigation was undertaken with the object of establishing the hydrogen positions. Only microcrystalline samples were available so that to avoid a large background of incoherent scattering the deuterides rather than hydrides were used. The relevant neutron scattering lengths (Shull \& Wollan, 1956) are, in $10 \cdot 12 \mathrm{~cm} ., b_{\mathrm{Al}}=0 \cdot 35, b_{\mathrm{Th}}=1 \cdot\left(0 \mathrm{I}\right.$ and $b_{\mathrm{I}}=0.65$.

[^0]
Experimental procedure

The deuterides were prepared in exactly the same way as the hydrides (van Vucht, 1960). For the roomtemperature neutron-diffraction measurements 10 mm . dia. cylindrical thin-walled aluminium sample holders were used. By means of a glass tube and a section of fernico tube these were connected to the apparatus in which the deuteride was prepared. Using a tilting arrangement the finished product could be transferred to the sample holder under vacuum after which the glass connecting tube was sealed off. The sample holder was then placed on the diffractometer described by Goedkoop (1957) and the diffraction pattern recorded with $1 \cdot(126$ A neutrons. Resolution was mainly determined by Soller slits 0.25 mm . wide and 200 mm . long placed in front of the counter.

For measurements at low temperature a singlejacketed vacuum cryostat as shown in Fig. I was placed on the goniometer. Liquid air or liquid nitrogen was placed in the inner cylinder, to the bottom of which the sample holder was fixed. The glass-sealed sample holders were unsuited for this arrangement and so a shorter one closed by means of a screw-plug

Table 1. Observed and calculated neutron intensities,

had to be used. The sample was transferred to it in a glove box filled with dry nitrogen. The neutrons reached the sample through the outer aluminium cylinder, which in this region had been turned off to a wall-thickness of 1 mm ., and through a thin thermal shield. During measurements the temperatures at top and bottom of the sample were recorded continuously.

Room temperature measurements were made for $n=0,2,3$ and 4. The diagrams, with instrumental background subtracted, are shown in Fig. 2. The
intensities of the peaks appear in the last column of Table 1. For $n=2$ data were also taken at liquidnitrogen temperature: they are shown in Fig. 3 and Table 2.

Determination of the crystal structures

The crystal structure of AlTh_{2} has been determined previously, by means of X-rays, by Braun and van

Fig. 1. Vertical section through arvostat. A. Support. B. Aluminium outer eryostat cylinder. (C. Suction line. 1). Vac:uum jacket. H. Aluminium flange. F. Pair of rubber washers. G. Stainless steel flange. H. Stud. J. Stainless steel inner cryostat cylinder. K. Brass bottom of inner cylinder. L. Aluminium specimen holder. M. Specimen holder clamping nut. N. Aluminium specimen holder plug. (). Specimen. P. Thermal shield. R. Thernorouples.

Vucht (1955) and by Murray (1955). As reported by the former authors, it may be described as follows:

Space group $I 4 / \mathrm{mcm}, 4$ units AlTh. per cell:

$$
a=7 \cdot 62, c=7 \cdot 86 \AA .
$$

Th in $8(h): \pm\left(x_{\mathrm{Th}}, \frac{1}{2}+x_{\mathrm{Th}}, 0\right) ; \pm\left(\frac{1}{2}+x_{\mathrm{Th}}, \bar{x}_{\mathrm{Th}}, 0\right)$; $\pm\left(\frac{1}{2}+x_{\mathrm{Th}}, x_{\mathrm{Th}}, \frac{1}{2}\right): \pm\left(x_{\mathrm{Th}}, \frac{1}{2}-x_{\mathrm{Th}}, \frac{1}{2}\right)$ with x_{Th} $=0 \cdot 162$.
Al in $4(a): \pm\left(0,0, \frac{1}{4}\right): \pm\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\right)$.
Using these data the neutron intensitics of AlTh. were calculated. They are listed in the third column of Table 1, where they are seen to be in quite good agreement with the observed values.

X-ray powder investigation of the hydrides resulted in diagrams which were identical with that of AlTh 2 except for the shifting of reflections due to the changing lattice constants. It was therefore concluded that, on the introduction of hydrogen, the space group, as
far as the Al and Th atoms are concerned, remains the same. A careful study of the X-ray intensities showed that for all the best fit was obtained with the same thorium parameter, $x_{\mathrm{Th}}=0 \cdot 162$, as in the alloy containing no hydrogen.

Table 2. Neutron diffraction intensities of $\mathrm{AlTh}_{2} \mathrm{D}_{2}$ pouder at $T=82^{\circ} \mathrm{K}$. compared to those at $T=293^{\circ} \mathrm{K}$.

		I_{o}	I_{o}		
$h k l$	0	$T=293$		${ }^{\circ} \mathrm{K} . \quad$	$T=82^{\circ} \mathrm{K}$.
:---:					
110					

It thus remained to place the deuterium atoms. In $\mathrm{AlTh}_{2} \mathrm{D}_{4}$, which apparently represents a maximum filling of positions, there are 16 deuterium atoms in the cell. Assuming that the space group is in fact the same as that of AlTh_{2}, there are four different 16 -fold positions. These were tried, the only one giving satisfactory agreement with the neutron data being

```
D) in \(16(l): \pm\left(x_{\mathrm{D}}, \frac{1}{2}+x_{\mathrm{D}}, \pm z_{\mathrm{D}}\right) ; \pm\left(\frac{1}{2}+x_{\mathrm{D}}, \bar{x}_{\mathrm{D}}, \pm z_{\mathrm{n}}\right)\) :
    \(\pm\left(\frac{1}{2}+x_{\mathrm{D}}, x_{\mathrm{D}}, \frac{1}{2} \pm z_{\mathrm{D}}\right): \pm\left(x_{\mathrm{D}}, \frac{1}{2}-x_{\mathrm{D}}, \frac{1}{2} \pm z_{\mathrm{D}}\right)\).
```

The parameter values were found by trial and error to be $x_{\mathrm{D}}=0.368$ and $z_{1}=(0 \cdot 137$. Table 1 shows the intensities calculated for this configuration. They are seen to agree closely with the observed values with the notable exception of 211 . As will be shown later, this arrangement places the deuterium atoms in the centers of the tetrahedral holes formed by the structure between sets of four Th atoms.

In the intermediate deuterides, $n<4$, it is now to be expected that the deuterium atoms oecupy the same sites, but only partially. If this is so, the question arises to what extent the distribution of the hydrogen atoms over the 16 sites is ordered.

The peculiar variation of the lattice constants with n would suggest that the hydrogen positions are in fact ordered to some extent. In particular, the fact. that a is a maximum for $n=\mathbf{2}$, i.c. for half the total number of sites occupied, could be understood by assuming that up to that point at most one of a pair of two sites that differ in z-coordinate only is occupied. Such a pair of sites are the centers of two deformed

Fig. 2. Neutron diffraction diagrams of $\mathrm{AlTh}_{2} \mathrm{D}_{n}$ for $n=0, n=2, n=3$ and $n=4$ at room temperature.

Th-tetrahedra with common base (see Fig. 4).* Thus in $\mathrm{Al}^{\prime} \mathrm{Th}_{2} \mathrm{~J}_{2}$ each deuterium atom would have a choice between two positions.

There are, then, three possibilities:

[^1](a) There is no correlation between the ways in which different pairs of sites are singly occupied.
(b) There is short-range order between the ways of occupation of the neighbouring pairs.
(c) There is long-range order.

Alternatives (a) and (b) would give rise to the same neutron intensities as for no order at all. The intensities for $\mathrm{AlTh}_{2} \mathrm{D}_{2}$ should then, apart from possible

Fig. 3. Neutron diffraction diagram of $\mathrm{AlT}^{\prime} \mathrm{h}_{2} \mathrm{D}_{2}$ at $82{ }^{\circ} \mathrm{K}$.
variations in the parameters, be the same as those calculated for $\mathrm{AlTh}_{2} \mathrm{D}_{4}$ with the deuterium contribution to the structure factor counted half. The result is found to agree closely with the obscrved diagram and the arrangement may be improved still somewhat by adjusting the deuterium parameters to

$$
x_{\mathrm{D}}=0.370 \quad \text { and } \quad z_{\mathrm{D}}=0.125
$$

The results are again shown in Table 1 .
Alternative (c) leaves a large number of possible ordering schemes. Some of these require a change in space group, which should in principle cause extra lines in the X-ray and neutron diagrams. Such lines have not been obscrved. For those schemes of ordering which are compatible with the space group, the neutron intensities have been calculated. They all agree less well with the observed intensities than those calculated without long-range order. The differences are not sufficient to exclude the possibility of longrange order entirely, but they do make it unlikely.

A distinction between total disorder and the alternatives (a) and (b) could in theory be made from the shape of the neutron diffuse scattering. However, the Bragg peaks are so crowded together in the diagram that they do not allow an examination of the diffuse scattering which is sufficiently accurate to see the effect.

Further support for the absence of long-range order is provided by proton magnetic resonance measurements on $\mathrm{AlTh}_{2} \mathrm{H}_{2}$ by Kroon, Van der Stolpe and Van Vucht (1959). These indicate in fact a total absence of ordering at room temperature. Below $225^{\circ} \mathrm{K}$., however, they do find indications for ordering of the hydrogen atoms. To see whether any long-range order would appear in $\mathrm{AlTh}_{2} \mathrm{D}_{2}$ measurements were made at $82^{\circ} \mathrm{K}$. (Fig. 3). No significant difference from the diagram taken at room temperature was obtained: see Fig. 3 and Table 2.

The neutron data for the phase $\mathrm{AlTh}_{2} \mathrm{D}_{3}$ led to similar conclusions as for $\mathrm{AlTh}_{2} \mathrm{I}_{2}$. The intensities in the third column of Table 1 have again been calculated for a disordered structure, with

$$
x_{\mathrm{D}}=0.370 \text { and } z_{1}=0 \cdot 130 .
$$

Agreement is seen to be good, again with exception of 211 .

This last discrepancy, which was even more pronounced in the case of $\mathrm{AlTh}_{2} \mathrm{D}_{4}$, is almost certainly due to the presence of small amounts of unreacted AlTh_{2} in the sample. As inspection of Table 1 shows 211 is by far the strongest peak in AlTh ${ }_{2}$, where it occurs at $20 \cdot 1^{\circ}$, which is quite close to its position in the other two samples. One easily verifies that an admixture of only 4.5% of AlTh_{2} is sufficient to account for the discrepancy observed in $\mathrm{AlTh}_{2} \mathrm{D}_{4}$.

A feature less easily accounted for is the scattering which all the deuterides show between 27° and 29° scattering angle. It does not correspond to any peaks and its presence makes the observed intensities of the 222 reflections somewhat uncertain.

Discussion of the structures

The final parameter values are once more summarized in Table 3. A c-axis projection of the unit cell is shown in Fig. 4.

Fig. 4. A c-axis projection of the unit cell of $\mathrm{AlTh}_{2} \mathrm{D}_{n}$.

In AlTh_{2} the thorium and aluminium atoms are in alternate layers, perpendicular to the c-axis. The thorium atoms form distorted tetrahedra, with three atoms in one layer and one in the next at a distance $c / 2$.

Table 3. X-ruy-determined cell constants of a feu: deuterides of AlTh_{2}
x_{11} and z_{1} are the experimentally obtained deuterium parameter values

specimen	$a($ A $)$	$c(\AA)$	$x_{\text {Th }}$	x_{1}	z_{1},
AlTh_{2}	$7 \cdot 62$	5.86	$0 \cdot 162$	--	-
$\mathrm{Al}^{\prime} \mathrm{Ch}_{2} \mathrm{D}_{2}$	7.702	$6 \cdot 230$	0. 162	$0 \cdot 370$	$0 \cdot 125$
$\mathrm{AlCh}_{2} \mathrm{D}_{3}$	7.676	6.383	0.162	$0 \cdot 370$	$0 \cdot 130$
$\mathrm{AlTh}_{2} \mathrm{D}_{4}$	7.629	6.517	$0 \cdot 162$	$0 \cdot 368$	(1).137

Fig. 5 . Packing of thorium atoms around deuterium in $\mathrm{AlTh}_{2} \mathrm{D}_{2}$, $\mathrm{AlTh}_{2} \mathrm{D}_{3}$ and $\mathrm{AlTh}_{2} \mathrm{D}_{4}$ compared to that in ThD_{2}.

It is seen now that in the hydrides the hydrogen sites are roughly at the centers of these deformed tetrahedra, so that each hydrogen is surrounded by four thorium atoms. Conversely, each Th atom is surrounded by 8 hydrogen sites: roughly along the c-axis there is one to each side, whilst the six others are at the corners of a nearly trigonal prism. This configuration is quite similar to the one found in ThD_{2} (Rundle et al., 1952).

Interatomic distances between H and Th may be seen from Fig. 5, which shows the configuration around each hydrogen site for the various hydrides as well as for Th_{2}. The parameter changes are seen to be such that, despite the changes in lattice constants, the interatomic distances are relatively constant.

In the intermediate hydrides only a fraction of the thorium tetrahedra are occupied. It is seen that the pairs of sites which have been referred to above are in fact the centers of two tetrahedra with a common base. The changes in lattice constant might then be taken to suggest that up to $n=2$ only one of the two tetrahedra is filled. We have seen that if this is so. the neutron data suggest that the two positions are filled at random, without correlation between different pairs of tetrahedra.

The authors wish to express their thanks to Dr B. O. Loopstra, who originally took part in the work. and especially to Mr H. J. J. de Haan who designed and operated the cryostat.

References

Braln, P. B. \& Van Vucht, J. H. N. (1952). Acta Cryst. 8, 246.
(Gofdкоор, J. A. (1957). Ned. T'. Natuurk. 19, 170.
Kroon, 1. J., Van der Stolpe, C. \& Van Vucht, J. H.N. (1959). Archives des Sciences, 12, 156.

Murray, J. R. (1955). J. Inst. Metals, 84, 91.
Rendle, R. E.. Shull, C. G. \& Wollan, E. O. (1952). Acta Cryst. 5, 22.
Shlol., C. G. \& Wollan, E. O. (1956). Solid State Physics, Vol. 2. Now York: Seitz and Turnbull.
Van Vucht, J. H. N. (1960). Philips Res. Rep. ('To be published.)

[^0]: * Present address: Reactor Centrum Nederland, Petten, the Netherlands.

[^1]: * The opposite arrangement, with always either none or both of the two paired sites occupied, may be ruled out on the basis of the proton magnetic resonance measurements mentioned later in this paper.

